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In this paper, we solve a function field analogue
of classical problems in analytic number theory,
concerning the autocorrelations of divisor functions,
in the limit of a large finite field.

1. Introduction
The goal of this paper is to study a function field
analogue of classical problems in analytic number theory,
concerning the autocorrelations of divisor functions.
First, we review the problems over the integers Z and
then we proceed to investigate the same problems over
the rational function field Fq(t).

(a) The additive divisor problem overZ
Let dk(n) be the number of representations of n as
a product of k positive integers (d2 is the standard
divisor function). Several authors have studied the
additive divisor problem (other names are ‘shifted divisor’
and ‘shifted convolution’), which is to get bounds, or
asymptotics, for the sum

Dk(x; h) :=
∑
n≤x

dk(n)dk(n + h), (1.1)

where h �= 0 is fixed for this discussion.
The case k = 2 (the ordinary divisor function) has a

long history: Ingham [1] computed the leading term, and
Estermann [2] gave an asymptotic expansion∑

n≤x
d2(n)d2(n + h)

= xP2(log x; h) + O(x11/12(log x)3), (1.2)
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where

P2(u; h) = 1
ζ (2)

σ−1(h)u2 + a1(h)u + a2(h) (1.3)

with

σw(h) =
∑
d|h

dw (1.4)

and a1(h) and a2(h) are very complicated coefficients.
The size of the remainder term has great importance in applications for various problems in

analytic number theory, in particular, the dependence on h. See Deshouillers & Iwaniec [3] and
Heath-Brown [4] for an improvement of the remainder term.

The higher divisor problem k ≥ 3 is also of importance, in particular, in relation to computing
the moments of the Riemann ζ -function on the critical line [5,6]. It is conjectured that

Dk(x; h) ∼ xP2(k−1)(log x; h) as x → ∞, (1.5)

where P2(k−1)(u; h) is a polynomial in u of degree 2(k − 1), whose coefficients depend on h (and k).
We can get good upper bounds on the additive divisor problem from results in sieve theory on
sums of multiplicative functions evaluated at polynomials, for instance, such as those by Nair &
Tenenbaum [7]. The conclusion is that for h �= 0

∑
n≤X

dk(n)dk(n + h) � X(log X)2(k−1), (1.6)

and we believe this is the right order of magnitude. But even a conjectural description of the
polynomials P2(k−1)(u; h) is difficult to obtain (see §7, [5,6]).

A variant of the problem about the autocorrelation of the divisor function is to determine an
asymptotic for the more general sum given by

Dk,r(x; h) :=
∑
n≤x

dk(n)dr(n + h). (1.7)

Asymptotics are known for the case (k, r) = (k, 2) for any positive integer k ≥ 2: Linnik [8] showed

Dk,2(x; 1) =
∑
n≤x

dk(n)d2(n + 1)

= 1
(k − 1)!

∏
p

(
1 − 1

p
+ 1

p

(
1 − 1

p

)k−1
)

x(log x)k + O(x(log x)k−1(log log x)k4
). (1.8)

Motohashi [9–11] gave an asymptotic expansion

Dk,2(x; h) = x
k∑

j=0

fk,j(h)(log x)j + O(x(log x)ε−1), (1.9)

for all ε > 0, where the coefficients fk,j(h) can in principle be explicitly computed. For an
improvement in the O term, see Fouvry & Tenenbaum [12].

(b) The Titchmarsh divisor problem overZ
A different problem involving the mean value of the divisor function is the Titchmarsh divisor
problem. The problem is to understand the average behaviour of the number of divisors of a shifted
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prime, that is, the asymptotics of the sum over primes∑
p≤x

d2(p + a), (1.10)

where a �= 0 is a fixed integer, and x → ∞. Assuming the generalized Riemann hypothesis (GRH),
Titchmarsh [13] showed that ∑

p≤x
d2(p + a) ∼ C1x (1.11)

with

C1 = ζ (2)ζ (3)
ζ (6)

∏
p|a

(
1 − p

p2 − p + 1

)
, (1.12)

and this was proved unconditionally by Linnik [8].
Fouvry [14] and Bombieri et al. [15] gave a secondary term,

∑
p≤x

d2(p + a) = C1x + C2Li(x) + O
(

x
(log x)A

)
, (1.13)

for all A > 1 and

C2 = C1

⎛
⎝γ −

∑
p

log p
p2 − p + 1

+
∑
p|a

p2 log p
(p − 1)(p2 − p + 1)

⎞
⎠ , (1.14)

with γ being the Euler–Mascheroni constant and Li(x) the logarithmic integral function.
In the following sections, we study the additive divisor problem and the Titchmarsh divisor

problem over Fq[t], obtaining definitive analogues of the conjectures described above.

(c) The additive divisor problem overFq[t]
We denote by Mn the set of monic polynomials in Fq[t] of degree n. Note that #Mn = qn.

The divisor function dk( f ) is the number of ways to write a monic polynomial f as a product of
k monic polynomials:

dk( f ) = #{(a1, . . . , ak), f = a1 · a2 · · · ak}, (1.15)

where it is allowed to have ai = 1.
The mean value of dk( f ) has an exact formula (see lemma 2.2):

1
qn

∑
f∈Mn

dk( f ) =
(

n + k − 1
k − 1

)
. (1.16)

Note that
(n+k−1

k−1
)

is a polynomial in n of degree k − 1 and leading coefficient 1/(k − 1)! Our first
goal is to study the autocorrelation of dk in the limit q → ∞. We show:

Theorem 1.1. Fix n > 1. Then

1
qn

∑
f∈Mn

dk( f )dk(f + h) =
(

n + k − 1
k − 12

)
+ O(q−1/2), (1.17)

uniformly for all 0 �= h ∈ Fq[t] of degree deg(h) < n, as q → ∞.

In light of (1.16), theorem 1.1 may be interpreted as the statement that dk( f ) and dk(f + h)
become independent in the limit q → ∞ as long as deg(h) < n.

To compare with conjecture (1.5) over Z, we note that
(n+k−1

k−1
)2

is a polynomial in n of degree
2(k − 1) with leading coefficient 1/[(k − 1)!]2, in agreement with the conjecture (see §7b).
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The case h = 0: As an aside, we note that the case h = 0 is of course dramatically different. Indeed
one can show that

lim
q→∞

1
qn

∑
f∈Mn

dk( f )2 =
(

n + k2 − 1
k2 − 1

)
(1.18)

is a polynomial of degree k2 − 1 in n, rather than degree 2(k − 1) for non-zero shifts.
Our method in fact gives the more general result:

Theorem 1.2. Let k = (k1, . . . , ks) be a tuple of positive integers and h = (h1, . . . , hs) a tuple of distinct
polynomials in Fq[t]. We let

Dk(n; h) =
∑

f∈Mn

dk1 (f + h1) · · · dks (f + hs).

Then, for fixed n > 1,

1
qn Dk(n; h) =

s∏
i=1

(
n + ki − 1

ki − 1

)
+ O(q−1/2),

uniformly on all tuples h = (h1, h2, . . . , hs) of distinct polynomials in Fq[t] of degrees deg(hi) < n
as q → ∞.

In particular, for k = (2, k) we get

lim
q→∞

1
qn D2,k(n; h) = (n + 1)

(
n + k − 1

k − 1

)

= 1
(k − 1)!

(
nk + k2 − k + 2

2
nk−1 + · · ·

)
, (1.19)

in agreement with (1.8).

(d) The Titchmarsh divisor problem overFq[t]
Let Pn be the set of monic irreducible polynomials in Fq[t] of degree n. By the Prime Polynomial
Theorem, we have

πq(n) := #Pn = qn

n
+ O

(
qn/2

n

)
.

Our next result is a solution of the Titchmarsh divisor problem over Fq[t] in the limit of large finite
field.

Theorem 1.3. Fix n > 1. Then

1
πq(n)

∑
P∈Pn

dk(P + α) =
(

n + k − 1
k − 1

)
+ O(q−1/2), (1.20)

uniformly over all 0 �= α ∈ Fq[t] of degree deg(α) < n.

For the standard divisor function (k = 2), we find

∑
P∈Pn

d2(P + α) = qn + qn

n
+ O(qn−1/2), (1.21)

which is analogous to (1.13) under the correspondence x ↔ qn and log x ↔ n.

(e) Independence of cycle structure of shifted polynomials
We conclude the introduction with a discussion on the connection between shifted polynomials
and random permutations and state a result that lies behind the results stated above.
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The cycle structure of a permutation σ of n letters is the partition λ(σ ) = (λ1, . . . , λn) of n if, in
the decomposition of σ as a product of disjoint cycles, there are λj cycles of length j. Note that λ(σ )
is a partition of n in the sense that λj ≥ 0 and

∑
j jλj = n. For example, λ1 is the number of fixed

points of σ and λn = 1 if and only if σ is an n-cycle.
For each partition λ � n, the probability that a random permutation on n letters has cycle

structure σ is given by Cauchy’s formula [16, ch. 1]:

p(λ) = #{σ ∈ Sn : λ(σ ) = λ}
#Sn

=
n∏

j=1

1
jλj · λj!

. (1.22)

For f ∈ Fq[t] of positive degree n, we say its cycle structure is λ( f ) = (λ1, . . . , λn) if, in the
prime decomposition f =∏

j Pj (we allow repetition), we have #{i : deg(Pi) = j} = λj. Thus, we
get a partition of n. In analogy with permutation, λ1( f ) is the number of roots of f in Fq (with
multiplicity) and f is irreducible if and only if λn( f ) = 1.

For a partition λ � n, we let χλ be the characteristic function of f ∈Mn of cycle structure λ:

χλ( f ) =
{

1, λ( f ) = λ

0, otherwise.
(1.23)

The Prime Polynomial Theorem gives the mean values of χλ:

1
qn

∑
f∈Mn

χλ( f ) = p(λ) + O(q−1), (1.24)

as q → ∞ (see lemma 2.1). We prove independence of cycle structure of shifted polynomials:

Theorem 1.4. For fixed positive integers n and s we have

1
qn

∑
f∈Mn

χλ1 (f + h1) · · · χλs (f + hs) = p(λ1) · · · p(λs) + O(q−1/2),

uniformly for all h1, . . . , hs distinct polynomials in Fq[t] of degrees deg(hi) < n and on all partitions
λ1, . . . , λs � n as q → ∞.

Remark. In this theorem, λ1, . . . , λs are partitions of n and are not the same as the λ1, . . . , λn

that appear in the definition of λ( f ) or λ(σ ) where in that case the λi are the number of parts of
length i.

We note that the statistic of theorem 1.4 is induced from the statistics of the cycle structure of
tuples of elements in the direct product Ss

n of s copies of the symmetric group on n letters Sn. This
plays a role in the proof, where we use that a certain Galois group is Ss

n [17], and we derive the
statistic from an explicit Chebotarev theorem. Since we have not found the exact formulation that
we need in the literature, we provide a proof in the appendix.

2. Mean values
For the reader’s convenience, we prove in this section some results for which we did not find a
good reference. We define the norm of a non-zero polynomial f ∈ Fq[t] to be |f | = qdeg( f ) and set
|0| = 0.

We start by proving (1.24):

Lemma 2.1. If λ � n is a partition of n and n is a fixed number then

1
qn #{f ∈Mn : λ( f ) = λ} = p(λ)(1 + O(q−1)), (2.1)

as q → ∞.
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Proof. To see this, note that to get a monic polynomial with cycle structure λ, we pick any λ1
primes of degree 1, λ2 primes of degree 2 (irrespective of the choice of ordering), and multiply
them together. Thus

#{f ∈Mn : λ( f ) = λ} =
n∏

j=1

πA(j)λj

λj!

(
1 + O

(
1
q

))
, (2.2)

where πA(j) is the number of primes of degree j in A = Fq[t]. By the Prime Polynomial Theorem,
πA(j) = qj/j + O(qj/2/j) whenever j ≥ 2 and πA(1) = q. Hence πA(j) = qj/j + O(qj−1/j). So

#{f ∈Mn : λ( f ) = λ} =
n∏

j=1

1
λj!

(
qj

j
+ O

(
qj−1

j

))λj

= q
∑

jλj

n∏
j=1

1
jλj · λj!

(1 + O(q−1)), (2.3)

which by (1.22) gives (2.1). �

Next, we prove (1.16):

Lemma 2.2. The mean value of dk( f ) is

1
qn

∑
f∈Mn

dk( f ) =
⎛
⎝n + k − 1

k − 1

⎞
⎠ . (2.4)

Proof. The generating function for dk( f ) is the kth power of the zeta function associated to the
polynomial ring Fq[t]:

Z(u)k =
∑

f monic

dk( f )udeg f =
∞∑

n=0

∑
f∈Mn

dk( f )un. (2.5)

Here,

Z(u) =
∑

f monic

udeg f =
∞∑

n=0

qnun = 1
1 − qu

. (2.6)

Using the Taylor expansion

1
(1 − x)k

=
∞∑

n=0

⎛
⎝n + k − 1

k − 1

⎞
⎠ xn (2.7)

and comparing the coefficients of un in (2.5) gives

qn

⎛
⎝n + k − 1

k − 1

⎞
⎠=

∑
f∈Mn

dk( f ), (2.8)

as needed. �

3. Proof of theorem 1.4
In the course of the proof, we shall use the following explicit Chebotarev theorem, which is a
special case of theorem A.4 of appendix A:

Theorem 3.1. Let A = (A1, . . . , An) be an n-tuple of variables over Fq, let F (t) ∈ Fq[A][t] be monic,
separable and of degree m viewed as a polynomial in t, let L be a splitting field of F over K = Fq(A), and
let G = Gal(F , K) = Gal(L/K). Assume that Fq is algebraically closed in L. Then there exists a constant
c = c(n, tot.deg(F )) such that for every conjugacy class C ⊆ G we have∣∣∣∣#{a ∈ F

n
q : Fra = C} − |C|

|G|qn
∣∣∣∣≤ cqn−1/2.
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Here Fra denotes the Frobenius conjugacy class ((S/R)/φ) in G associated to the
homomorphism φ : R → Fq given by A 
→ a ∈ F

n
q , where R = Fq[A, discF−1] and S is the integral

closure of R in the splitting field of F . See appendix A, in particular (A 11), for more details.
Let A = (A1, . . . , An) be an n-tuple of variables and set

Fi = Tn + A1Tn−1 + · · · + An + hi(T) and F =F1 · · ·Fs, (3.1)

where the hi are distinct polynomials. Let L be the splitting field of F over K = Fq(A) and let F be
an algebraic closure of Fq. By [17, Proposition 3.1],

G := Gal(F , K) = Gal
(

L
K

)
= Gal

(
FL
FK

)
= Ss

n.

In [17], it is assumed that q is odd, but using [18] that restriction can now be removed for n > 2.
This, in particular, implies that L ∩ F = Fq (since the image of the restriction map Gal(FL/FK) →
Gal(L/K) is Gal(L/L ∩ FK), so by the above and Galois correspondence, L ∩ (FK) = K, and in
particular L ∩ F = K ∩ F = Fq). Hence, we may apply theorem 3.1 with the conjugacy class

C = {(σ1, . . . , σs) ∈ G : λσi = λi}
to get that ∣∣∣#{a ∈ F

n
q : Fra = C} − |C|/|G| · qn

∣∣∣≤ c(s, n)qn−1/2.

Since |C|/|G| = p(λ1) · · · p(λs) and since #{a ∈ F
n
q : discT(F )(a) = 0} = Os,n(qn−1), it remains to show

that for a ∈ F
n
q with discT(F (a)) �= 0 we have Fra = C if and only if λFi(a,T) = λi for all i = 1, . . . , s.

And indeed, extend the specialization A 
→ a to a homomorphism Φ of Fq[A, Y] to F, where
Y = (Yij), and Yi1, . . . , Yin are the roots of Fi. Then Fra is, by definition, the conjugacy class of the
Frobenius element FrΦ ∈ G, which is defined by

Φ(FrΦ (Yij)) = Φ(Yij)
q. (3.2)

Note that FrΦ permutes the roots of each Fi and hence can be identified with an s-tuple of
permutations Frφ = (σ1, . . . , σs) ∈ G = Ss

n. Since the Φ(Yij) are distinct, the cycle structure of σi
equals the cycle structure of the Φ(Yij) → Φ(Yij)q, j = 1, . . . , n by (3.2), which in turn equals the
cycle structure of the polynomial Fi(a, T). Hence FrΦ ∈ C if and only if λFi(a,T) = λi for all i, as
needed. �

4. Proof of theorem 1.1
First, we need the following lemma:

Lemma 4.1. Let f ∈Mn and h ∈ Fq[t] such that deg(h) < n. Then we have that

#{f ∈Mn : f and f + h are square-free} = qn + O(qn−1). (4.1)

Proof. The number of square-free f ∈Mn is qn − qn−1 for n ≥ 2 (for n = 1 it is q), and since n >

deg(h), as f runs over all monic polynomials of degree n so does f + h, and hence the number of
f ∈Mn such that f + h is square-free is also qn − qn−1. Therefore, there are at most 2qn−1 monic
f ∈Mn for which at least one of f and f + h is not square-free, as claimed. �

We denote by 〈A〉 the mean value of an arithmetic function A over Mn:

〈A〉 := 1
qn

∑
f∈Mn

A( f ). (4.2)

For this, it follows that if A is an arithmetic function on Mn that is bounded independently of
q, then

〈A〉 = 1
qn

∑
f∈Mn

f and f+h square-free

A( f ) + O(qn−1). (4.3)
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Now for square-free f , the divisor function dk( f ) depends only on the cycle structure of f ,
namely

dk( f ) = k|λ( f )|, (4.4)

where for a partition λ = (λ1, . . . , λn) of n, we denote by |λ| =∑
λj the number of parts of λ.

Therefore, we may apply (4.3) with (4.4) to get

〈dk(•)dk(• + h)〉 =
〈
k|λ(•)|k|λ(•+h)|

〉
+ O(q−1). (4.5)

Since the function kλ( f ) depends only on the cycle structure of f , it follows from theorem 1.4 that

〈
k|λ(•)|k|λ(•+h)|

〉
=
〈
k|λ(•)|

〉 〈
k|λ(•+h)|

〉
+ O(q−1/2) =

〈
k|λ(•)|

〉2 + O(q−1/2). (4.6)

Applying again (4.3) with (4.4) together with lemma 2.2, we conclude that

〈
k|λ(•)|

〉
= 〈dk(•)〉 + O(q−1) =

⎛
⎝n + k − 1

k − 1

⎞
⎠ + O(q−1). (4.7)

Combining (4.5), (4.6) and (4.7) then gives the desired result. �

5. Proof of theorem 1.2
We argue as in §4:

〈 s∏
i=1

dki (• + hi)

〉
=
〈 s∏

i=1

k|λ(•+hi)|
i

〉
+ O(q−1)

=
s∏

i=1

〈k|λi(•)|
i 〉 + O(q−1/2)

=
s∏

i=1

⎛
⎝n + ki − 1

ki − 1

⎞
⎠ + O(q−1/2).

(Here the first passage uses (4.3) with (4.4), the last also uses lemma 2.2, and the middle passage
is done by invoking theorem 1.4.) �

6. Proof of theorem 1.3
Let 1P be the characteristic function of the primes of degree n, i.e.

1P ( f ) = χ(0,0,...,0,1)( f ) =
{

1, if f ∈Pn,

0, otherwise.
(6.1)

The Prime Polynomial Theorem gives that 〈1P 〉 = 1/n + O(q−1) and we have calculated in §4
that 〈k|λ(•)|〉 = (n+k−1

k−1
) + O(q−1). Since these two functions clearly depend only on cycle structures

(recall that α �= 0), theorem 1.4 gives

〈1P (•) · k|λ(•)|〉 = 〈1P (•)〉〈k|λ(•)|〉 = 1
n

⎛
⎝n + k − 1

k − 1

⎞
⎠ + O(q−1/2). (6.2)
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Therefore,

n
qn

∑
P∈Pn

dk(P + α) = n
〈
1P (•) · k|λ(•)|〉

=
⎛
⎝n + k − 1

k − 1

⎞
⎠ + O(q−1/2),

as needed. �

7. Comparing conjectures and our results
In this section, we check the compatibility of the theorems presented in §1c with the known results
over the integers.

(a) Estermann’s theorem forFq[t]
First, we prove the function field analogue of Estermann’s result (1.2). For simplicity, we carry it
out for h = 1.

Theorem 7.1. Assume that n ≥ 1. Then

1
qn

∑
f∈Mn

d2( f )d2(f + 1) = (n + 1)2 − 1
q

(n − 1)2. (7.1)

(Note that q is fixed in this theorem).

We need two auxiliary lemmas before proving theorem 7.1.
Let A, B ∈ Fq[t] be monic polynomials. We want to count the number of monic polynomial

solutions (u, v) ∈ Fq[t]2 of the linear Diophantine equation

Au − Bv = 1, deg(Au) = n = deg(Bv). (7.2)

As follows from the Euclidean algorithm, a necessary and sufficient condition for the equation
Au − Bv = 1 to be solvable in Fq[t] is gcd(A, B) = 1.

Lemma 7.2. Given monic polynomials A, B ∈ Fq[t], gcd(A, B) = 1 and

n ≥ deg(A) + deg(B), (7.3)

then the set of monic solutions (u, v) of (7.2) forms a non-empty affine subspace of dimension n − deg(A) −
deg(B), hence the number of solutions is exactly qn/|A||B|.

Proof. We first ignore the degree condition. By the theory of the linear Diophantine equation,
given a particular solution (u0, v0) ∈ Fq[t]2, all other solutions in Fq[t]2 are of the form

(u0, v0) + k(B, A), (7.4)

where k ∈ Fq[t] runs over all polynomials.
Given u0, we may replace it by u1 = u0 + kB where deg(u1) < deg(B) (or is zero), so that we

may assume that the particular solution satisfies

deg(u0) < deg(B). (7.5)

In that case, if k �= 0 then

deg(u0 + kB) = deg(kB) (7.6)
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and u0 + kB is monic if and only if k is monic. Hence if k �= 0, then

deg(u0 + kB) = n − deg(A) ⇔ deg(kB) = n − deg(A)

⇔ deg(k) = n − deg(A) − deg(B). (7.7)

Thus, the set of solutions of (7.2) is in one-to-one correspondence with the space
Mn−deg(A)−deg(B) of monic k of degree n − deg(A) − deg(B). In particular, the number of solutions
is qn/|A||B|. �

Let

S(α, β; γ , δ) := #{x ∈Mα , y ∈Mβ , z ∈Mγ , u ∈Mδ : xy − zu = 1}. (7.8)

Then we have the following lemma.

Lemma 7.3. For α + β = n = γ + δ,

S(α, β; γ , δ) = qn ×
⎧⎨
⎩

1, if min(α, β; γ , δ) = 0,

1 − 1
q

, otherwise.
(7.9)

Proof. We have some obvious symmetries from the definition

S(α, β; γ , δ) = S(β, α; γ , δ) = S(α, β; δ, γ ), (7.10)

and hence to evaluate S(α, β; γ , δ) it suffices to assume

α ≤ β, γ ≤ δ. (7.11)

Assuming (7.11), we write

S(α, β; γ , δ) =
∑

x∈Mα

z∈Mγ

gcd(x,z)=1

#{y ∈Mβ , u ∈Mδ : xy − zu = 1}. (7.12)

Note that α, γ ≤ n/2 (since α + β = n and α ≤ β) and hence α + γ ≤ 1
2 (α + β + γ + δ) = n. Thus,

we may use lemma 7.2 to deduce that

#{y ∈Mβ , u ∈Mδ : xy − zu = 1} = qn−α−γ (7.13)

and therefore

S(α, β; γ , δ) = qn−α−γ
∑

x∈Mα

z∈Mγ

gcd(x,z)=1

1. (7.14)

Recall the Möbius inversion formula, which says that, for monic f ,
∑

d|f μ(d) equals 1 if f = 1,
and 0 otherwise. Hence, we may write the coprimality condition gcd(x, z) = 1 using the Möbius
function as

∑
d|x, d|z

μ(d) =
⎧⎨
⎩

1, gcd(x, z) = 1,

0, otherwise,
(7.15)
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and therefore

S(α, β; γ , δ) = qn−α−γ
∑

x∈Mα

z∈Mγ

∑
d|x, d|z

μ(d)

= qn−α−γ
∑

deg(d)≤min(α,γ )
d monic

μ(d)#{x ∈Mα : d | x} · #{z ∈Mγ : d | z}

= qn−α−γ
∑

deg(d)≤min(α,γ )
d monic

μ(d)
qα

|d| · qγ

|d|

= qn
∑

deg(d)≤min(α,γ )
d monic

μ(d)
|d|2

= qn
∑

deg(d)≤min(α,β;γ ,δ)
d monic

μ(d)
|d|2 , (7.16)

where we have used the fact that α ≤ β and γ ≤ δ.
We next claim that

∑
deg(d)≤η

d monic

μ(d)
|d|2 =

⎧⎪⎨
⎪⎩

1, η = 0,

1 − 1
q

, η ≥ 1,
(7.17)

which when we insert into (7.16) proves the lemma.
To prove (7.17), we sum over d of fixed degree

∑
deg(d)≤η

d monic

μ(d)
|d|2 =

∑
0≤ξ≤η

1
q2ξ

∑
d∈Mξ

μ(d) (7.18)

and recall that [19, ch. 2, exercise 12]

∑
d∈Mξ

μ(d) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, ξ = 0,

−q, ξ = 1,

0, ξ ≥ 2,

(7.19)

from which (7.17) follows. �

Proof of theorem 7.1. We write

ν :=
∑

f∈Mn

d2( f )d2(f + 1)

= #{x, y, z, u ∈ Fq[t] monic : xy − zu = 1, deg(xy) = n = deg(zu)}. (7.20)

We partition this into a sum over variables with fixed degree, that is

ν =
∑

α+β=n
γ+δ=n

α,β,γ ,δ≥0

S(α, β; γ , δ). (7.21)

We now input the results of lemma 7.3 into (7.21) to deduce that

ν =
∑

α+β=n
γ+δ=n

α,β,γ ,δ≥0

qn ×

⎧⎪⎨
⎪⎩

1, min(α, β; γ , δ) = 0,

1 − 1
q

, otherwise.
(7.22)
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Of the (n + 1)2 quadruples of non-negative integers (α, β; γ , δ) so that α + β = n = γ + δ, there are
exactly 4n tuples (α, β; γ , δ) for which min(α, β) = 0 = min(γ , δ), namely they are

(n, 0; n, 0), (n, 0; 0, n), (0, n; n, 0) and (0, n; 0, n) (7.23)

and the 4(n − 1) tuples of the form

(n, 0; i, n − i), (0, n; i, n − i), (i, n − i; n, 0) and (i, n − i; 0, n) (7.24)

for 0 < i < n.
Concluding, we have

ν = (4 + 4(n − 1)) · qn + [(n + 1)2 − (4 + 4(n − 1))] · qn
(

1 − 1
q

)

= qn
(

(n + 1)2 − 1
q

(n − 1)2
)

, (7.25)

proving the theorem. �

It is easy to check that theorem 1.1 is compatible with the function field analogue of
Estermann’s result. Taking q → ∞ in (7.1), we recover the same results as presented in (1.17) with
k = 2.

(b) Higher divisor functions
Next, we want to check compatibility of our result in theorem 1.1 with what is conjectured over
the integers. It is conjectured that

Dk(x; h) ∼ xP2(k−1)(log x; h) as x → ∞, (7.26)

where P2(k−1)(u; h) is a polynomial in u of degree 2(k − 1), whose coefficients depend on h
(and k). This conjecture appears in the work of Ivić [20] and Conrey & Gonek [5], and from their
work, with some effort, we can explicitly write the conjectural leading coefficient for the desired
polynomial. The conjecture over Z states that

P2(k−1)(u; h) = 1
[(k − 1)!]2 Ak(h)u2k−2 + · · · , (7.27)

where

Ak(h) =
∞∑

m=1

cm(h)
m2 C2

−k(m) (7.28)

with

C−k(m) = m1−k
m∑

a1=1

· · ·
m∑

ak=1

e
(

ha1 · · · ak

m

)
, (7.29)

where e(x) = e2π ix and cm(h) is the Ramanujan sum,

cm(h) =
m∑

a=1
(a,m)=1

e2π i(a/m)h =
∑

d|gcd(m,h)

dμ
(m

d

)
. (7.30)

We now translate the conjecture above to the function field setting using the correspondence
x ↔ qn and log x ↔ n and that summing over positive integers correspond to summing over
monic polynomials in Fq[t]. Under this correspondence, the function field analogue of the above
polynomial is given in the following conjecture.
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Conjecture 7.4. For q fixed, let 0 �= h ∈ Fq[t]. Then as n → ∞,

∑
f∈Mn

dk( f )dk(f + h) ∼ 1
[(k − 1)!]2 Ak,q(h)qnn2k−2, (7.31)

where

Ak,q(h) =
∑

m∈Fq[t]
monic

cm,q(h)(gcd(m, h))2(k−1)

|m|2(k−1)
g2

k−1

(
m

gcd(m, h)

)
, (7.32)

where |m| = qdeg(m),

gk−1( f ) = #{a1, . . . , ak−1 mod f : a1 . . . ak−1 ≡ 0 mod f } (7.33)

and
cm,q(h) =

∑
d|gcd(m,h)

|d|μ
(m

d

)
(7.34)

is the Ramanujan sum over Fq[t]. The sum above is over all monic polynomials d ∈ Fq[t], μ( f ) is
the Möbius function for Fq[t] and Φ(m) is the Fq[t] analogue for Euler’s totient function.

Remark 7.5. Note that

C2
q,−k(m) = gcd(m, h)2k−1

|m|k−1
g2

k−1

(
m

gcd(m, h)

)
(7.35)

corresponds to C2
−k(m) as given in (7.29).

Remark 7.6. Note that we establish this conjecture for k = 2 and h = 1 in theorem 7.1.

We now check that our theorem 1.1 is consistent with the conjecture (7.27) and (7.32) for the
leading term of the polynomial P2(k−1)(u; h).

The polynomial given by theorem 1.1 is⎛
⎝n + k − 1

k − 12

⎞
⎠= 1

[(k − 1)!]2 n2(k−1) + · · · . (7.36)

We wish to show that, as q → ∞, Ak,q(h)/[(k − 1)!]2 matches the leading coefficient of
(n+k−1

k−1
)2

,
that is

lim
q→∞ Ak,q(h) = 1. (7.37)

Indeed, from (7.34) we note that |cm,q(h)| = Oh(1), and it is easy to see that

gk−1(n) ≤ nk−1d(n)k−1 � |n|k−2+ε , ∀ ε > 0. (7.38)

Thus, we find

Ak,q(h) = 1 + O

⎛
⎜⎜⎝ ∑

m∈M
deg(m)>0

1
|m|2−ε

⎞
⎟⎟⎠ . (7.39)

The series in the O term is a geometric series:

∑
m∈M

deg(m)>0

1
|m|2−ε

=
∞∑

n=1

1
qn(2−ε)

#Mn =
∞∑

n=1

1
qn(1−ε)

= 1/q1−ε

1 − 1/q1−ε
(7.40)

and hence tends to 0 as q → ∞, giving (7.37).
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Appendix A. An explicit Chebotarev theorem
We prove an explicit Chebotarev theorem for function fields over finite fields. This theorem is
known to experts, cf. [21, Theorem 4.1], [22, Proposition 6.4.8] or [23, Theorem 9.7.10]. However,
there it is not given explicitly with the uniformity that we need to use. Therefore, we provide a
complete proof.

(a) Frobenius elements
Let Fq be a finite field with q elements and algebraic closure F. We denote by Frq the Frobenius
automorphism x 
→ xq.

Let R be an integrally closed finitely generated Fq-algebra with fraction field K, and let F ∈ R[T]
be a monic separable polynomial of degree degF = m such that

disc F ∈ R∗ (A 1)

is invertible. Let Y = (Y1, . . . , Ym) be the roots of F , and put

S = R[Y], L = K(Y) and G = Gal
(

L
K

)
.

We identify G with a subgroup of Sm via the action on Y1, . . . , Ym:

g(Yi) = Yg(i), g ∈ G ≤ Sm. (A 2)

By (A 1) and Cramer’s rule, S is the integral closure of R in L and S/R is unramified. In particular,
the relative algebraic closure Fqμ of Fq in L is contained in S. For each ν ≥ 0 we let

Gν = {g ∈ G : g(x) = xqν

, ∀ x ∈ Fqμ}, (A 3)

the preimage of Frν
q in G under the restriction map. Since Gal(Fqν /Fq) is commutative, Gν is stable

under conjugation.
For every Φ ∈ HomFq (S, F) with Φ(R) = Fqν there exists a unique element in G, which we call

the Frobenius element and denote by [
S/R
Φ

]
∈ G, (A 4)

such that

Φ

([
S/R
Φ

]
x
)

= Φ(x)qν

, ∀ x ∈ S. (A 5)

Since S is generated by Y over R, it suffices to consider x ∈ {Y1, . . . , Yk} in (A 5). If we further
assume that Φ ∈ HomFqμ (S, F), then (A 5) gives that [S/R/Φ]x = xqν

for all x ∈ Fqμ , hence

Φ(R) = Fqν �⇒
[

S/R
Φ

]
∈ Gν . (A 6)

Lemma A.1. For every g ∈ Sm and ν ≥ 1 there exists Vg,ν = (vij) ∈ GLm(F) such that Frqν acts on the
rows of Vg,ν as g acts on Y :

v
qν

ij = vg(i)j. (A 7)

Proof. By replacing q by qν , we may assume without loss of generality that ν = 1. By relabelling,
we may assume without loss of generality that

g = (s1 · · · e1)(s2 · · · e2) · · · (sk · · · ek), (A 8)

where s1 = 1, si+1 = ei + 1 and ek = m.
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Let V be the block diagonal matrix

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

V1

V2

. . .

Vk

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where

Vi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ζi · · · ζ
λi−1
i

1 ζ
q
i · · · ζ

q(λi−1)
i

...
...

...

1 ζ
qλi−1

i · · · ζ
qλi−1(λi−1)
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the Vandermonde matrix corresponding to an element ζi ∈ F of degree λi = ei − si over Fq. So

det Vi =∏
1≤j′<j≤λi

(ζ qj′−1

i − ζ
qj−1

i ) �= 0, hence V is invertible, and by definition Frq acts on the rows
of V as the permutation g. �

Lemma A.2. Let Φ : S → F with Φ(R) = Fqν and let g ∈ Gν . Then

[
S/R
Φ

]
= g ⇐⇒ V−1

⎛
⎜⎜⎜⎜⎝

Φ(Y1)

...

Φ(Ym)

⎞
⎟⎟⎟⎟⎠ ∈ F

m
qν , (A 9)

where V = Vg,ν is the matrix from lemma A.1.

Proof. Let z1, . . . , zm ∈ F be the unique solution of the linear system

Φ(Yi) =
m∑

j=1

vijzj, i = 1, . . . , m, (A 10)

i.e. ⎛
⎜⎜⎜⎜⎝

z1

...

zm

⎞
⎟⎟⎟⎟⎠= V−1

⎛
⎜⎜⎜⎜⎝

Φ(Y1)

...

Φ(Ym)

⎞
⎟⎟⎟⎟⎠.

If zi ∈ Fqν , i.e. zqν

i = zi, we get by applying Frqν on (A 10) that

Φ(Yi)
qν =

m∑
j=1

v
qν

ij zi =
m∑

j=1

vg(i)jzi = Φ(Yg(i)).

Hence [(S/R)/Φ] = g by (A 5).
Conversely, if [(S/R)/Φ] = g, then Φ(Yi)qν = Φ(Yg(i)) by (A 2) and (A 5). We thus get that Frqν

permutes the equations in (A 10), hence Frqν fixes the unique solution of (A 10). That is to say,

zqν

i = zi, as needed. �
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Next, we describe the dependence of the Frobenius element when varying the
homomorphisms. For φ ∈ HomFq (R, F) we define(

S/R
φ

)
=
{[

S/R
Φ

]
: Φ ∈ HomFqμ (S, F) prolongs φ

}
. (A 11)

Unlike the case when working with ideals, this set is not a conjugacy class in G, as we fix the action
on Fqμ . However, as we will prove below, the group G0 acts regularly on ((S/R)/φ) by conjugation.
In particular, if G0 = G, or equivalently if L ∩ F = Fq (with F denoting an algebraic closure of Fq),
then ((S/R)/φ) is a conjugacy class.

To state the result formally, we recall that a group Γ acts regularly on a set Ω if the action is free
and transitive, i.e. for every ω1, ω2 ∈ Ω there exists a unique γ ∈ Γ with γω1 = ω2.

Lemma A.3. Let φ ∈ HomFq (R, F) and let H be the subset of HomFqμ (S, F) consisting of all
homomorphisms prolonging φ. Assume that φ(R) = Fqν .

(1) The group G0 defined in (A 3) acts regularly on H by g : Φ 
→ Φ ◦ g.
(2) For every g ∈ G0 and Φ ∈ H, we have[

S/R
Φ ◦ g

]
= g−1

[
S/R
Φ

]
g.

(3) Let Φ ∈ H, let g = [S/R/Φ], let Hg = {Ψ ∈ H : [S/R/Ψ ] = g} and let CG0 (g) be the centralizer of
g in G0. Then CG0 (g) acts regularly on Hg.

(4) #Hg = #G0/#C = #G/μ · #C, where C is the conjugacy class of g in G0.

Proof. We consider G0 ≤ G as subgroups of Sm via the action on Y1, . . . , Ym. Let g ∈ G0 and Φ ∈ H.
Then g(x) = x and Φ(x) = x, thus Φ ◦ g(x) = x, for all x ∈ Fqμ . Thus, Φ ◦ g ∈ H. If Φ ◦ g = Φ, then
Φ(Yg(i)) = Φ(Yi) for all i. Since discF ∈ R∗ it follows that Φ(discF ) �= 0, thus Φ maps {Y1, . . . , Ym}
injectively onto {Φ(Y1), . . . , Φ(Ym)}. We thus get that Yg(i) = Yi, hence g is trivial. This proves that
the action is free.

Next, we prove that the action is transitive. Let Φ, Ψ ∈ H. Then kerΦ and kerΨ are prime
ideals of S that lie over the prime ideal kerφ of R, hence over the prime kerφ Fqμ of RFqμ . By
[24, VII, 2.1], there exists g1 ∈ Gal(L/KFqμ ) = G0 such that ker(Φ ◦ g−1

1 ) = g1kerΦ = kerΨ . Replace
Φ by Φ ◦ g−1

1 to assume without loss of generality that kerΦ = kerΨ . Hence Φ = α ◦ Ψ , where α

is an automorphism of the image Φ(S) = Ψ (S) that fixes both Fqμ and φ(R) = Fqν . That is to say,
α = Frρ

q , where ρ is a common multiple of ν and μ. By (A 5)

Φ(x) = Ψ (x)qρ = Ψ

([
S/R
Ψ

]
x
)qρ−ν

= · · · = Ψ

([
S/R
Ψ

]ρ/ν

x

)
,

so Φ = Ψ ◦ g, where g = [(S/R)/Ψ ]ρ/ν . Since, for x ∈ Fqμ we have g(x) = xqρ

and μ | ρ, we have
g(x) = x, so g ∈ G0. This finishes the proof of (1).

To see (2) note that

Φ

(
g
[

S/R
Φ ◦ g

]
x
)

= Φ ◦ g
([

S/R
Φ ◦ g

]
x
)

= Φ ◦ g(x)qν = Φ(gx)qν

= Φ

([
S/R
Φ

]
gx
)

, for all x ∈ S,

so g[(S/R)/Φ ◦ g] = [(S/R)/Φ]g (since Φ is unramified), as claimed.
The rest of the proof is immediate, as (3) follows immediately from (1) and (2), and (4) follows

from (3). �

By (A 6) and lemma A.3, it follows that if Φ(R) = Fqν , then ((S/R)/φ) ⊆ Gν is an orbit of the
action of conjugation from G0.
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Let C ⊆ G be such an orbit, i.e. C = Cg = {hgh−1 : h ∈ G0}, g ∈ Gν . Then C ⊆ Gν , since the latter is
stable under conjugation (see after (A 3)). The explicit Chebotarev theorem gives the asymptotic
probability that ((S/R)/φ) = C:

Pν,C = #{φ ∈ HomFq (R, F) : φ(R) = Fqν and ((S/R)/φ) = C}
#{φ ∈ HomFq (R, F) : φ(R) = Fqν } .

Theorem A.4. Let ν ≥ 1, let C ⊆ Gν be an orbit of the action of conjugation from G0. Then

Pν,C = #C
#Gν

+ OdegF ,cmp(R)(q
−1/2),

as q → ∞.

We define cmp(R) below.
Before proving this theorem, we need to recall the Lang–Weil estimates, which play a crucial

role in the proof of the theorem and in particular give the asymptotic value of the denominator
of Pν,C.

Let U be a closed subvariety of A
n
Fq

that is geometrically irreducible. Lang–Weil estimates
give that

#U(Fq) = qdim U + On,deg U(qdim U−1/2). (A 12)

Note that both n and deg U are stable under base change. This may be reformulated in terms of
Fq-algebras, to say that if

R ∼= Fq[X1, . . . , Xn, f −1
0 ]/(f1, . . . , fk) (A 13)

then
#{φ ∈ HomFq (R, F) : φ(R) = Fq} = qν dim R + Ocmp(R)(q

dim R−1/2), (A 14)

provided R ⊗ F is a domain, where cmp(R) is a function of
∑

deg fi and n, taking minimum over
all presentations (A 13). By the remark following (A 12), it follows that if two Fq-algebras S and S′
become isomorphic over F, then cmp(S′) is bounded in terms of cmp(S). A final property needed
is that if R → S is a finite map of degree d, then cmp(S) is bounded in terms of cmp(R) and d.

Proof. Let g ∈ C, let V = Vg,ν be as in (A 7) and let S′ = R[Z], where Z = V−1Y. Note that Z is the
unique solution of the linear system

Yi =
n∑

j=1

vijZj, i = 1, . . . , n. (A 15)

Let N = #HomFq (S′, Fqν ). By (A 9), the number of Φ ∈ HomFq (S, F) with [(S/R)/Φ] = g equals
N. By lemma A.3, for each φ there exist exactly #G0/#C homomorphisms Φ ∈ HomFq (S, F) with
[(S/R)/Φ] = g prolonging φ. Hence,

#
{
φ ∈ HomFq (R, F) : φ(R) = Fqν and

(
S/R
φ

)
= C

}
= #C/#G0 · N.

Since Gν is a coset of G0, #G0 = #Gν . Hence, it suffices to prove that N = qν dim R +
Ocmp(R),degF (qν−1/2). As R → S′ is a finite map of degree degF , we get that dim R = dim S′ and
cmp(S′) is bounded in terms of cmp(R) and degF . It suffices to show that S′ ∩ F ⊆ Fqν since then
by (A 14) we have

N = qν dim S′ + OcmpS′ (qν dim S′−1/2) = qν dim R + Ocmp(R), deg F(qν dim R−1/2),

and the proof is done.
Let L be the fraction field of S and K of R. Since L/K is Galois and L ∩ F = Fqμ and since the

actions of Frqν and g agree on Fqμ , it follows that there exists an automorphism τ of LF such that
τ |L = g and τ |F = Frqν . By (A 7) τ permutes the equations (A 15), hence fixes Z and thus S′. In
particular, if x ∈ S′ ∩ F, then xqν = τ (x) = x, so x ∈ Fqν , as was needed to complete the proof. �
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Correction
Cite this article: Andrade JC, Bary-Soroker L,
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convolution and the Titchmarsh divisor
problem overFq[t]’. Phil. Trans. R. Soc. A 374:
20150360.
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Correction to ‘Shifted
convolution and the
Titchmarsh divisor problem
overFq[t]’
J. C. Andrade, L. Bary-Soroker and Z. Rudnick

Phil. Trans. R. Soc. A 373, 20140308 (28 April 2015;
Published online 23 March 2015) (doi:10.1098/rsta.
2014.0308)

Two of the equations in the above article contained a
typographical error.

Equation (1.17) should read as follows:

1
qn

∑
f∈Mn

dk(f )dk(f + h) =
(

n + k − 1
k − 1

)2

+ O(q−1/2). (1.17)

Equation (7.36) should read as follows:(
n + k − 1

k − 1

)2

= 1
[(k − 1)!]2 n2(k−1) + · · · . (7.36)

2015 The Author(s) Published by the Royal Society. All rights reserved.
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