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In this paper, we solve a function field analogue
of classical problems in analytic number theory,
concerning the autocorrelations of divisor functions,
in the limit of a large finite field.

1. Introduction

The goal of this paper is to study a function field
analogue of classical problems in analytic number theory,
concerning the autocorrelations of divisor functions.
First, we review the problems over the integers Z and
then we proceed to investigate the same problems over
the rational function field Fy(t).

(a) The additive divisor problem over Z

Let di(n) be the number of representations of n as
a product of k positive integers (d, is the standard
divisor function). Several authors have studied the
additive divisor problem (other names are ‘shifted divisor’
and ‘shifted convolution’), which is to get bounds, or
asymptotics, for the sum

Di(x; 1) := Y d(n)d(n + h), (1.1)

where h # 0 is fixed for this discussion.

The case k=2 (the ordinary divisor function) has a
long history: Ingham [1] computed the leading term, and
Estermann [2] gave an asymptotic expansion

> dy(n)dy(n + h)

n<x

= xP,(log x; 1) + O(x'/2(log x)*), (1.2)
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where
1
Pa(u; ) = @m(h)uz + a1 (Wu + ay(h) (1.3)
with
o) =" " d” (1.4)
dlh

and a1 (h) and a3 (h) are very complicated coefficients.

The size of the remainder term has great importance in applications for various problems in
analytic number theory, in particular, the dependence on /. See Deshouillers & Iwaniec [3] and
Heath-Brown [4] for an improvement of the remainder term.

The higher divisor problem k > 3 is also of importance, in particular, in relation to computing
the moments of the Riemann ¢-function on the critical line [5,6]. It is conjectured that

Dy(x; h) ~ xPog_1)(log x; 1) as x — oo, (1.5)

where Py_1y(u; h) is a polynomial in u of degree 2(k — 1), whose coefficients depend on & (and k).
We can get good upper bounds on the additive divisor problem from results in sieve theory on
sums of multiplicative functions evaluated at polynomials, for instance, such as those by Nair &
Tenenbaum [7]. The conclusion is that for /1 # 0

> di(n)di(n + h) < X(log X)*¢1, (1.6)

n<X

and we believe this is the right order of magnitude. But even a conjectural description of the
polynomials Pp(_1)(1; h) is difficult to obtain (see §7, [5,6]).

A variant of the problem about the autocorrelation of the divisor function is to determine an
asymptotic for the more general sum given by

Diy(x; 1) =) dy(n)dy(n + h). (1.7)

n=<x

Asymptotics are known for the case (k, r) = (k, 2) for any positive integer k > 2: Linnik [8] showed

Dia(x;1) =) di(n)da(n + 1)

n<x

—L]‘[ 1—1+1<1—1>k_1 x(log x)* + O(x(log x)* L(loglog x)').  (1.8)
e T T U s B eREEE

Motohashi [9-11] gave an asymptotic expansion

k

Do) =x_ fi.j()(log x) + O(x(log x)* ™), (1.9)
j=0

for all &>0, where the coefficients fi;(h) can in principle be explicitly computed. For an
improvement in the O term, see Fouvry & Tenenbaum [12].

(b) The Titchmarsh divisor problem over Z

A different problem involving the mean value of the divisor function is the Titchmarsh divisor
problem. The problem is to understand the average behaviour of the number of divisors of a shifted
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prime, that is, the asymptotics of the sum over primes

> da(p+a), (1.10)

p=x

where a # 0 is a fixed integer, and x — co. Assuming the generalized Riemann hypothesis (GRH),
Titchmarsh [13] showed that

> dy(p+a)~Cix (1.11)
p=x
with
_ @0 <1_ P ) 112
o I 51) _—

and this was proved unconditionally by Linnik [8].
Fouvry [14] and Bombieri et al. [15] gave a secondary term,

X
d = Li — 1.1
pZ;c »(p +a)=Cix + Cy l(x)+o<(logx)A>, (1.13)
forall A>1and
PG PV .. L P logp (1.14)
P optl =D —p+D) )

with y being the Euler-Mascheroni constant and Li(x) the logarithmic integral function.
In the following sections, we study the additive divisor problem and the Titchmarsh divisor
problem over [F4[t], obtaining definitive analogues of the conjectures described above.

(c) The additive divisor problem over IF[t]

We denote by M, the set of monic polynomials in Fy[t] of degree n. Note that #M,, =q".
The divisor function di(f) is the number of ways to write a monic polynomial f as a product of
k monic polynomials:

dk(f)=#{(a1,...,uk),f=a1 ~a2~~-ak}, (1.15)

where it is allowed to have a; = 1.
The mean value of di(f) has an exact formula (see lemma 2.2):

— Z di(f) = <"+k ) (1.16)

7" feM,

Note that (”ﬁ;l) is a polynomial in 7 of degree k — 1 and leading coefficient 1/(k — 1)! Our first
goal is to study the autocorrelation of dj in the limit 4 — co. We show:

Theorem 1.1. Fixn > 1. Then

q— > d(Pdi(f +h) = (” - _" 2 ) +0(g7'), (1.17)

feM,
uniformly for all 0 # h € Fy[t] of degree deg(h) < n, as g — oc.

In light of (1.16), theorem 1.1 may be interpreted as the statement that di(f) and di(f + h)
become independent in the limit § — oo as long as deg(h) < n.

2
To compare with conjecture (1.5) over Z, we note that ("ﬁ;l) is a polynomial in n of degree

2(k — 1) with leading coefficient 1/[(k — 112, in agreement with the conjecture (see §7b).

O 63 0 5 S g B
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The case h =0: As an aside, we note that the case 1 =0 is of course dramatically different. Indeed

one can show that
lim — Z d(f)? = (”“‘ ) ) (1.18)

q—00 q fe./\/[”

is a polynomial of degree k? — 1 in 1, rather than degree 2(k — 1) for non-zero shifts.
Our method in fact gives the more general result:

Theorem 1.2. Let k= (ky, ..., ks) be a tuple of positive integers and h = (hy, . .
polynomials in Fy[t]. We let

., hs) a tuple of distinct

W) =" di (F + ) - di (f + ).
feM,

Then, for fixed n > 1,
1 S (n+ki—1 _
g D) =1‘[( oo ) +0(q~?),
1

i=1

uniformly on all tuples h=(hy,ho,...,hs) of distinct polynomials in Fy[t] of degrees deg(h;) <n
as q — o0.

In particular, for k = (2, k) we get

k

1 K—k+2
k-1 <nk+ %”k_l +> (1.19)

o1 N n+k—1
Jim anz,k(n,h)—(nH)( i )

in agreement with (1.8).

(d) The Titchmarsh divisor problem over IF[t]
Let P, be the set of monic irreducible polynomials in F4[t] of degree n. By the Prime Polynomial
Theorem, we have
5] qn/Z
q(n):=#Pp=—+0 pll B

Our next result is a solution of the Titchmarsh divisor problem over IF,[¢] in the limit of large finite
field.

Theorem 1.3. Fix n > 1. Then

3 d(P+a)= (” - ol ) +0(q7?), (1.20)

Hq( ) PePy,
uniformly over all 0 # o € IFy[t] of degree deg(a) < n.
For the standard divisor function (k =2), we find

n
S b +a)=q"+ L + 0@, (1.21)
PeP, n

which is analogous to (1.13) under the correspondence x <> " and log x < n.

(e) Independence of cycle structure of shifted polynomials

We conclude the introduction with a discussion on the connection between shifted polynomials
and random permutations and state a result that lies behind the results stated above.

T E R e - |
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The cycle structure of a permutation o of n letters is the partition A(o) = (A1, ..., Ay) of n if, in
the decomposition of o as a product of disjoint cycles, there are A; cycles of length j. Note that 1(o’)
is a partition of 7 in the sense that A; > 0 and Zj jAj=n. For example, 11 is the number of fixed
points of ¢ and A, =1 if and only if o is an n-cycle.

For each partition A+ #, the probability that a random permutation on n letters has cycle
structure o is given by Cauchy’s formula [16, ch. 1]:

p(r) =

#o €S, (o) =1} li[
)\., )\[

s (1.22)

For f e IFg[t] of positive degree n, we say its cycle structure is A(f) =(A1,...,Ay) if, in the
prime decomposition f = Hj Pj (we allow repetition), we have #{i:deg(P;) =j} = ;. Thus, we
get a partition of n. In analogy with permutation, A1(f) is the number of roots of f in F; (with
multiplicity) and f is irreducible if and only if A,,(f) =1.

For a partition A 711, we let x, be the characteristic function of f € M, of cycle structure A:

=1y M= (1.23)

0, otherwise.

The Prime Polynomial Theorem gives the mean values of ;.

6.(H=p)+ 0@, (1.24)

q feM,
as g — oo (see lemma 2.1). We prove independence of cycle structure of shifted polynomials:
Theorem 1.4. For fixed positive integers n and s we have
02 (f 1)+ 0, (f +hs) =pGia) -+ p(s) + 0@ ™12,
q femM,

uniformly for all hy,..., hs distinct polynomials in Fg[t] of degrees deg(h;) <n and on all partitions
M,..., Astnasqg— oo.

Remark. In this theorem, Aq,..., As are partitions of # and are not the same as the A1,..., Ay
that appear in the definition of A(f) or A(0) where in that case the A; are the number of parts of
length i.

We note that the statistic of theorem 1.4 is induced from the statistics of the cycle structure of
tuples of elements in the direct product S;, of s copies of the symmetric group on n letters S;,. This
plays a role in the proof, where we use that a certain Galois group is S;, [17], and we derive the
statistic from an explicit Chebotarev theorem. Since we have not found the exact formulation that
we need in the literature, we provide a proof in the appendix.

2. Mean values

For the reader’s convenience, we prove in this section some results for which we did not find a
good reference. We define the norm of a non-zero polynomial f € [F4[#] to be |f| = 798 and set
0] =

We start by proving (1.24):

Lemma 2.1. If A+ is a partition of n and n is a fixed number then

qin#{f € My :2(f) = 1) =p()(L + 04~ ), 21)

as q — oo.

oAt e 5 3 i g BBk
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Proof. To see this, note that to get a monic polynomial with cycle structure A, we pick any 11
primes of degree 1, 1, primes of degree 2 (irrespective of the choice of ordering), and multiply
them together. Thus

#{feMn:A(f)zk}—H A(].) (1+o(q>>, (2.2)

j=1

where 74(j) is the number of primes of degree j in A =[F;[t]. By the Prime Polynomial Theorem,
7A() =4/ /j + O(¢/?/j) whenever j > 2 and w4(1) = . Hence 74 (j) = ¢/ /j + O(¢~1 /j). So

n 1 q]' qf_l Aj
#{feMni)v(f)Z)h}=Hﬁ ( +O<.>>
-1 AU J i
n
:qZJ'M
j=1

which by (1.22) gives (2.1). |

1), (2.3)

Next, we prove (1.16):

Lemma 2.2. The mean value of di(f) is

tk—1
— Z di(f) = ( ) (2.4)

q fGMn -1

Proof. The generating function for di(f) is the kth power of the zeta function associated to the
polynomial ring F[¢]:

Zwk= " di(Huts =" N di(fu’. (2.5)
f monic n=0feM,
Here,
Z(u):fmzomc = Zq 1—qu 20

Using the Taylor expansion

1 © n+k—1 .
(1—>=Z( e ) @)

and comparing the coefficients of u" in (2.5) gives

n+k—-1
q”( )= > d(f), 2.8)

k -1 fEM,,
as needed. [ |

3. Proof of theorem 1.4

In the course of the proof, we shall use the following explicit Chebotarev theorem, which is a
special case of theorem A .4 of appendix A:

Theorem 3.1. Let A=(Aqy,...,Ay) be an n-tuple of variables over Fy, let F(t) € F4[A][t] be monic,
separable and of degree m viewed as a polynomial in t, let L be a splitting field of F over K =1F4(A), and
let G =Gal(F,K) = Gal(L/K). Assume that [Fy is algebraically closed in L. Then there exists a constant
¢ =c(n, tot.deg(F)) such that for every conjugacy class C € G we have

IC] _
#la e T} : Fr,=C) - T 7" <cq" V2.
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Here Fr, denotes the Frobenius conjugacy class ((S/R)/¢) in G associated to the
homomorphism ¢ : R — F,; given by A — a € F};, where R=TF4[A, discF —11and S is the integral
closure of R in the splitting field of . See appendix A, in particular (A 11), for more details.

Let A=(A1,...,Ay) be an n-tuple of variables and set

Fi=T'+AT" '+ .+ Ay +hi(T) and F=F - F, 3.1)

where the £; are distinct polynomials. Let L be the splitting field of 7 over K=1[;(A) and let F be
an algebraic closure of ;. By [17, Proposition 3.1],

L FL s
G :=Gal(F,K) =Gal (E) =Gal (ﬁ) =S5.
In [17], it is assumed that g is odd, but using [18] that restriction can now be removed for n > 2.
This, in particular, implies that L N F =, (since the image of the restriction map Gal(FL/FK) —
Gal(L/K) is Gal(L/L NFK), so by the above and Galois correspondence, L N (FK) =K, and in
particular L N F = KN =TF;). Hence, we may apply theorem 3.1 with the conjugacy class

C={(01,...,05) €G:Ag; = Aj}

to get that
#aeFy :Fra=C} — |Cl/IG| - q"| < (s, n)g" =12,

Since |C|/|G|=p(r1) - - - p(rs) and since #{a € IF; s discr(F)(a) = 0} = Os (g™ 1), it remains to show
that for a Fg with discr(F(a)) # 0 we have Fr, = Cif and only if Az, 1) = A; foralli=1,...,s.

And indeed, extend the specialization A + a to a homomorphism @ of F4[A, Y] to IF, where
Y =(Yj),and Yy, ..., Y}, are the roots of F;. Then Fr, is, by definition, the conjugacy class of the
Frobenius element Fre € G, which is defined by

@ (Fro (Yj)) = @(Yy)T. 3.2)

Note that Fre permutes the roots of each F; and hence can be identified with an s-tuple of
permutations Fry = (01,...,05) € G=S5;. Since the &(Y;;) are distinct, the cycle structure of o;
equals the cycle structure of the @(Yj;) > @(Yy)7,j=1,...,n by (3.2), which in turn equals the
cycle structure of the polynomial F;(a, T). Hence Fre € C if and only if Az, 1) = A; for all i, as
needed. |

4. Proof of theorem 1.1

First, we need the following lemma:
Lemma 4.1. Let f € My, and h € Fy[t] such that deg(h) < n. Then we have that
#{f € My, :f and f + h are squarefree} = g" + O(q" ). (4.1)

Proof. The number of square-free f € M,, is ¢ — "~ for n > 2 (for n =1 it is g), and since n >
deg(h), as f runs over all monic polynomials of degree n so does f + h, and hence the number of
f € My, such that f + h is square-free is also " — g"~!. Therefore, there are at most 2¢"~! monic
f € M,, for which at least one of f and f + & is not square-free, as claimed. |

We denote by (A) the mean value of an arithmetic function A over M,;:

(A) N > A. (4.2)

q feM,

For this, it follows that if A is an arithmetic function on M, that is bounded independently of
q, then
1 _
W=z > A(H)+0@" ). (4.3)
feM,
f and f-+h square-free

e E R e - |
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Now for square-free f, the divisor function di(f) depends only on the cycle structure of f,
namely

di(f) = kM, (4.4)

where for a partition A =(1,...,4;) of n, we denote by |A|= Z)*j the number of parts of A.
Therefore, we may apply (4.3) with (4.4) to get

(d(o)g(e + 1)) = (kMO T) 4 O(gT), (4.5)
Since the function k*(/) depends only on the cycle structure of f, it follows from theorem 1.4 that

<ku<o>\ kw-+h)|> _ (kw-n) <k|x<-+h>|> + 02 = <km<->\)2 + 012, (4.6)

Applying again (4.3) with (4.4) together with lemma 2.2, we conclude that

n+k—1
(K1) = (o)) + 0™ = | o (4.7)

Combining (4.5), (4.6) and (4.7) then gives the desired result. |

5. Proof of theorem 1.2

We argue as in §4:

<1‘[ di(o + hi>> = <]‘[ kl'-“'*’”)'> +0(7)
i=1 i=1

S

— H(kl‘)\’(.)‘) + O(q—l/Z)
i=1

(Here the first passage uses (4.3) with (4.4), the last also uses lemma 2.2, and the middle passage
is done by invoking theorem 1.4.) |

6. Proof of theorem 1.3

Let 1p be the characteristic function of the primes of degree 1, i.e.

1, iffeP,,
1p(f) = x00,..,01)(f) = { iffe (6.1)

0, otherwise.
The Prime Polynomial Theorem gives that (1p)=1/n+ O(q_l) and we have calculated in §4

that (k) = (”ﬁ;l) + O(g71). Since these two functions clearly depend only on cycle structures
(recall that o # 0), theorem 1.4 gives

+k-1
(Lp(e) - KHO) = (1 (o) (7)) = (" - ) +0@~1%). (6.2)

SO i 753 i i i
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Therefore,

qﬁn Z dr(P+ )= n(1p(.) . klk(-)\>

PeP,
n+k—1
= +0@ '),
k-1

as needed. [

7. Comparing conjectures and our results

In this section, we check the compatibility of the theorems presented in §1c with the known results
over the integers.

(a) Estermann’s theorem for [Fy[t]

First, we prove the function field analogue of Estermann’s result (1.2). For simplicity, we carry it
out forh=1.

Theorem 7.1. Assume that n > 1. Then

qln > da(fda(f +1)=(n+1)* - %(n —1)% (7.1)

feM,

(Note that q is fixed in this theorem).

We need two auxiliary lemmas before proving theorem 7.1.
Let A, B € Fy[t] be monic polynomials. We want to count the number of monic polynomial
solutions (i, v) € ]Fq[t]2 of the linear Diophantine equation

Au—Bv=1, deg(Au)=n=deg(Bv). (7.2)

As follows from the Euclidean algorithm, a necessary and sufficient condition for the equation
Au — Bv =1 to be solvable in IF4[t] is gcd(A, B) = 1.

Lemma 7.2. Given monic polynomials A, B € Fg[t], gcd(A, B) =1 and
n > deg(A) + deg(B), (7.3)

then the set of monic solutions (u, v) of (7.2) forms a non-empty affine subspace of dimension n — deg(A) —
deg(B), hence the number of solutions is exactly q" /|A||B|.

Proof. We first ignore the degree condition. By the theory of the linear Diophantine equation,
given a particular solution (1o, vg) € Fq[t]Z, all other solutions in Iﬁ‘q[i‘]2 are of the form

(uo,v0) +k(B, A), (7.4)

where k € Fy[t] runs over all polynomials.
Given ug, we may replace it by u; = ug + kB where deg(u1) < deg(B) (or is zero), so that we
may assume that the particular solution satisfies

deg(up) < deg(B). (7.5)
In that case, if k # 0 then
deg(uo + kB) = deg(kB) (7.6)

oAt e 5 3 i g BBk
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and ug + kB is monic if and only if k is monic. Hence if k # 0, then

deg(up + kB) =n — deg(A) < deg(kB) =n — deg(A)
& deg(k)=n — deg(A) — deg(B). (7.7)
Thus, the set of solutions of (7.2) is in one-to-one correspondence with the space
M1 deg(A)—deg(B) of monic k of degree n — deg(A) — deg(B). In particular, the number of solutions
is 7"/|Al|B|. n
Let
S(a,B;y,8) =#xe Mg, ye Mg,ze M, ue Ms:xy —zu=1}. (7.8)

Then we have the following lemma.

Lemma7.3. Fora+p=n=y +3,

1, ifmin(e, B;y,8) =0,
S(a, B;v,8)=1q" 1 , 7.9
@By, 9)=q"x 1— —, otherwise. @9)
Proof. We have some obvious symmetries from the definition
S(a, B;v,8)=5(B,a;v,8) =S, B; 8, y), (7.10)
and hence to evaluate S(«, B; y, ) it suffices to assume
a<p, y<=d. (7.11)
Assuming (7.11), we write
S(e, B;v,8)= Y. #yeMpueMs:xy—zu=1). (7.12)
xeMy
zeM,,
ged(x,z)=1

Note that «,y <n/2 (since @ + 8 =7 and a < 8) and hence a + y < %(a + B +y +8)=n. Thus,
we may use lemma 7.2 to deduce that

#Hye Mg, ue Ms:xy —zu=1y=q""77 (7.13)
and therefore
S, B;v,8)=q""*7" Y 1 (7.14)
xeM,
zeM,
ged(x,z)=1

Recall the Mobius inversion formula, which says that, for monic f, Zdy w(d) equals 1if f=1,
and 0 otherwise. Hence, we may write the coprimality condition ged(x, z) =1 using the Mobius
function as

1/ d( 7 ):1/
ORI (7.15)

dix, d|z 0, otherwise,
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and therefore

S, By, )=q""" > >

xeM, d|x,d|z
zeM,
=g Z p(@d#{x e My :d|x}-#{ze M, :d |z}

deg(d)<min(a,y)
d monic

« gy
=g Z ,u(d)q— L1

e

d monic

o w(d)
=2 p
deg(d)<min(a,y)
d monic

o i)
=1 2 2’
deg(d)<min(a,B;y,5)

d monic

where we have used the fact that « < g and y <.
We next claim that

1, n=0,
B
> =
deg(d)<n ] 1--, n=1,
d monic q

which when we insert into (7.16) proves the lemma.
To prove (7.17), we sum over d of fixed degree

n(d) 1
2 ar T L 2
deg(d)<n 0<&é<p de M;
d monic

and recall that [19, ch. 2, exercise 12]

1,  §=0,
dE/Vl;
0, §=2

from which (7.17) follows.

Proof of theorem 7.1. We write

vi= Y da(f)da(f +1)

feM,
=#{x,y,z,u € Fg[t] monic: xy — zu=1, deg(xy)=n=deg(zu)}.
We partition this into a sum over variables with fixed degree, that is
V= Z S(a, B;v,8).
a+p=n
y+é=n
a,f,y,820

We now input the results of lemma 7.3 into (7.21) to deduce that

1, min(a, B;y,8) =0,
v= D0 4" 1
a+p=n 1— —, otherwise.
y+é=n q

a,B,y,6=0

(7.16)

(7.17)

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)
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Of the (1 + 1)2 quadruples of non-negative integers («, 8; y, §) so that « +  =n =y + §, there are
exactly 4n tuples («, B; ¥, §) for which min(«, 8) = 0= min(y, §), namely they are

(n,0;n,0), (n,0;0,n), (0,7;n,0) and (0,1;0,n) (7.23)
and the 4(n — 1) tuples of the form
n,0;i,n—1i), O,nin—1i), (i,n—in0) and (i,n—1i0,n) (7.24)

for0<i<n.
Concluding, we have

v=>(A+4n-1) " +[n+1)? -4 +4n—-1)]-¢q" (1—%)

1
=q" ((n +1)7% - a(n - 1)2) , (7.25)
proving the theorem. [ |

It is easy to check that theorem 1.1 is compatible with the function field analogue of
Estermann’s result. Taking g — oo in (7.1), we recover the same results as presented in (1.17) with
k=2.

(b) Higher divisor functions

Next, we want to check compatibility of our result in theorem 1.1 with what is conjectured over
the integers. It is conjectured that

Dy(x; h) ~ xPog—1)(log x;h)  as x — oo, (7.26)

where Py_1)(u; 1) is a polynomial in u of degree 2(k — 1), whose coefficients depend on h
(and k). This conjecture appears in the work of Ivi¢ [20] and Conrey & Gonek [5], and from their
work, with some effort, we can explicitly write the conjectural leading coefficient for the desired
polynomial. The conjecture over Z states that

1
Page—1y (1 1) = WAk<h)qu—2 +oe, (7.27)
where
_ > cm(h)
A=Y 3 C%, (m) (7.28)
m=1
with

Catm=m*3 .3 e (W) (7.29)

where e(x) = €™ and ¢y, (h) is the Ramanujan sum,

m

2mi(a/m)h m
() = ; e2rila/mh _ dlngX(;ﬂ ) du (E) . (7.30)
(a,m)=1 !
We now translate the conjecture above to the function field setting using the correspondence
x < g" and logx < n and that summing over positive integers correspond to summing over
monic polynomials in [Fy[t]. Under this correspondence, the function field analogue of the above
polynomial is given in the following conjecture.
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Conjecture 7.4. For g fixed, let 0 # i € Fy[t]. Then as n — oo,

1
> d(f)di(f +h) ~ = 1)|]2Ak,q(h)qnnzk_zl (731)
feM, ’
where 2
Cm,q(h)(ng(mr By~ 2 m
Ay =3 B : (7.32)
mem] |m|2(=1) ged(m, h)
monic
where |m| = gdes(),
Sk—1(f)=#{ay, ..., ak—1 mod f:a;1 ...a,_1 =0 mod f} (7.33)
and m
eng) =Y ldln (%) (7.34)
d|ged(m,h)

is the Ramanujan sum over F4[t]. The sum above is over all monic polynomials d € Fy[t], u(f) is
the Mobius function for Fy[t] and @ (m) is the F4[t] analogue for Euler’s totient function.

Remark 7.5. Note that

> _gc:d(m,h)Zk_1 5 ( m )
Co—k(m) = i1 81 acd(m, ) (7.35)

corresponds to C2 «(m) as given in (7.29).
Remark 7.6. Note that we establish this conjecture for k=2 and h =1 in theorem 7.1.

We now check that our theorem 1.1 is consistent with the conjecture (7.27) and (7.32) for the
leading term of the polynomial Py_1)(1; h).
The polynomial given by theorem 1.1 is

n+k—-1 1
_ 20k=1) 4 ...
L = k- D2 n + . (7.36)

2
We wish to show that, as g — 00, A 4(h)/[(k — 1)!]* matches the leading coefficient of (”ﬂ;l) ,
that is

lim Ay q(h)=1. (7.37)

g—o0

Indeed, from (7.34) we note that [c;, q(h)] = Oy(1), and it is easy to see that
gr_1(n) < i1t < 2, veso. (7.38)
Thus, we find
Ap,(M)=1+0 ! 7.3
kq(h) =1+ Z m< | (7.39)
meM
deg(m)>0

The series in the O term is a geometric series:

1 =1 =1 1/q'¢
m;:/l |m|2—e = HX_; qn(Z—e)#M” = nX_; qn(l—s) = 1— 1/1/]1_6 (7.40)
deg(im)>0 B B

and hence tends to 0 as ¢ — oo, giving (7.37).
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Appendix A. An explicit Chebotarev theorem

We prove an explicit Chebotarev theorem for function fields over finite fields. This theorem is
known to experts, cf. [21, Theorem 4.1], [22, Proposition 6.4.8] or [23, Theorem 9.7.10]. However,
there it is not given explicitly with the uniformity that we need to use. Therefore, we provide a
complete proof.

(a) Frobenius elements

Let I be a finite field with g elements and algebraic closure F. We denote by Fr, the Frobenius
automorphism x - x9.

Let R be an integrally closed finitely generated [F;-algebra with fraction field K, and let 7 € R[T]
be a monic separable polynomial of degree deg F = m such that

disc F € R* (A1)

is invertible. Let Y = (Y7, ..., Y};) be the roots of F, and put

S=R[Y], L=K(Y) and G=Gal(%>.

We identify G with a subgroup of S;; via the actionon Y7y,..., Yy:
g(Y)=Ye0), 8§€G<Sm. (A2)

By (A 1) and Cramer’s rule, S is the integral closure of R in L and S/R is unramified. In particular,
the relative algebraic closure Fy« of F; in L is contained in S. For each v > 0 we let

Gy=1{geG:igx)=x", YxeFyu), (A3)

the preimage of Fr; in G under the restriction map. Since Gal(Fg /F;) is commutative, G, is stable
under conjugation.
For every @ € Hom]Fq(S, F) with @(R) =Fy there exists a unique element in G, which we call
the Frobenius element and denote by
S/R
[ / ] €eG, (A4

D
such that

@ <[%] x) =), VYxeS. (A5)

Since S is generated by Y over R, it suffices to consider x € {Y71,..., Yy} in (A 5). If we further
assume that @ € Homg,, (S, F), then (A 5) gives that [S/R/®]x = x7 forall x Fgu, hence

®(R)=Fp —> [%] €G,. (A6)

Lemma A.1. For every g € Sy and v > 1 there exists Vy,, = (vjj) € GLy(F) such that Fry» acts on the
rows of Vg, as gactson Y:

v

U?]- = Ug(i)]" (A 7)

Proof. By replacing q by 4", we may assume without loss of generality that v = 1. By relabelling,
we may assume without loss of generality that

g=(s1 ---e1)s2 ---e)---(5k - ep), (A8)

where sy =1, 511 =e¢; + 1 and ¢y = m.

e E Ry e - |
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Let V be the block diagonal matrix

Vi
Vs
V: 7
Vi
where

1y gt

Ai—1

1 ;iq ;iq( )

V=

2i—1 ML(—1
1 ;iq ool =1

1

is the Vandermonde matrix corresponding to an element ¢; € F of degree A; =¢; — s; over ;. So

i1 i1
detV; = ngj' <j< Ai(;ﬁ — ;iq ) #0, hence V is invertible, and by definition Fr; acts on the rows
of V as the permutation g. [ ]

Lemma A.2. Let @ :S— F with ®(R) =Fy and let g € G,. Then
(Y1)
S/R _ .
[%]zg — v : |erm, (A9)
D (Yim)

where V = Vg, is the matrix from lemma A.1.

Proof. Let zy, ...,z € F be the unique solution of the linear system

oY) = i vizj, i=1,...,m, (A 10)
j=1
ie.
z1 ?(Y1)
=y
Zm DY)

IfzieFp,ie. z?" =z;, we get by applying Fry» on (A 10) that

m m
()T =) vl zi = venizi = P (V).
j=1 j=1

Hence [(S/R)/®] =g by (A 5).
Conversely, if [(S/R)/®] =g, then oY) = @ (Yq(i)) by (A 2) and (A 5). We thus get that Fry
permutes the equations in (A 10), hence Fry fixes the unique solution of (A 10). That is to say,
¢

z; =zj,as needed. [ |
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Next, we describe the dependence of the Frobenius element when varying the
homomorphisms. For ¢ € Homg, (R, F) we define

<S{TR> = {[S{TR] 1@ € Homy,, (S, F) prolongs ¢}. (A11)
Unlike the case when working with ideals, this set is not a conjugacy class in G, as we fix the action
on ;.. However, as we will prove below, the group Gy acts regularly on ((S/R)/¢) by conjugation.
In particular, if Go = G, or equivalently if L N F =, (with I denoting an algebraic closure of ),
then ((S/R)/¢) is a conjugacy class.

To state the result formally, we recall that a group I" acts regularly on a set §2 if the action is free
and transitive, i.e. for every wi, w; € §2 there exists a unique y € I' with yw; = wy.

Lemma A.3. Let ¢ € Homp, (R, F) and let H be the subset of Homg,, (S,F) consisting of all
homomorphisms prolonging ¢. Assume that ¢(R) = Fg.

(1) The group Gy defined in (A 3) acts reqularlyon Hby g: @ +— ® o g.
(2) Forevery g € Go and & € H, we have

S/RT_ _4[S/R
aeel [T s

(3) Let @ € H, let g=[S/R/®], let He ={¥ € H:[S/R/¥] =g} and let Cg,(g) be the centralizer of
g in Go. Then Cg,(g) acts regularly on Hy.
(4) #Hg = #Go/#C =#G/u - #C, where C is the conjugacy class of g in Go.

Proof. We consider Go < G as subgroups of S, via the actionon Y1,...,Y},. Letge Gopand @ € H.
Then g(x) =x and @(x) =x, thus @ o g(x) =x, for all x € Fgu. Thus, @ oge H. If ® 0 g= &, then
D (Yg(5) = @(Y;) for all i. Since discF € R* it follows that @(discF) # 0, thus @ maps {Y1,..., Yo}
injectively onto {®(Y7), ..., @(Ym)}. We thus get that Y¢(;) = Y, hence g is trivial. This proves that
the action is free.

Next, we prove that the action is transitive. Let @,¥ € H. Then ker® and ker¥ are prime
ideals of S that lie over the prime ideal ker¢ of R, hence over the prime ker¢ Fyu of RFgu. By
[24, VII, 2.1], there exists g1 € Gal(L/KIF4:) = Gg such that ker(® o g1’ 1) = g1ker®d =ker¥. Replace
@by ®ogy 1 to assume without loss of generality that ker® =ker¥. Hence @ =« o ¥, where «
is an automorphism of the image @(S) = ¥(S) that fixes both Fgu and ¢(R) =F,. That is to say,
o= Fr,'; , where p is a common multiple of v and x. By (A 5)

p—V /v
own=vir = ([ = =e (")
v '4

s0 @ =W og, where ¢=[(S/R)/Ww]°/". Since, for x € Fyu we have g(x) =x7" and 1| p, we have
g(x) =x, so g € Gg. This finishes the proof of (1).

To see (2) note that
S/R S/R
? (g[¢/og]x> =7 Og([¢/og]x>

— @ og) = d(gn)

= ([%]gx) , forallxes,

s0 g[(S/R)/® o gl =[(S/R)/®]g (since @ is unramified), as claimed.
The rest of the proof is immediate, as (3) follows immediately from (1) and (2), and (4) follows
from (3). |

By (A 6) and lemma A.3, it follows that if @(R) =y, then ((S/R)/¢) € G, is an orbit of the
action of conjugation from Gy.
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Let C C G be such an orbit, i.e. C=Cy = {hgh_1 :h e Go}, g€ G,. Then C C G,, since the latter is
stable under conjugation (see after (A 3)). The explicit Chebotarev theorem gives the asymptotic
probability that ((S/R)/¢) = C:

_ #{¢ e Homp, (R, F) : ¢(R) =Fp and ((5/R)/¢) = C}
e #( € Hom, (R, F): ¢(R) = Fy)

Theorem A.4. Let v >1, let C C G, be an orbit of the action of conjugation from Go. Then

#C -1/2
PV,C = E odeg ]—',cmp(R)(q / ),

as g — oo.

We define cmp(R) below.

Before proving this theorem, we need to recall the Lang—-Weil estimates, which play a crucial
role in the proof of the theorem and in particular give the asymptotic value of the denominator
of P, c.

Let U be a closed subvariety of A]';«q that is geometrically irreducible. Lang—Weil estimates
give that

#U(Fq) — qdimll + On,degll(qdim U—1/2). (A 12)

Note that both n and deg U are stable under base change. This may be reformulated in terms of
[Fg-algebras, to say that if

REFg[Xt,- o, X fy N/ i, fe) (A13)

then
#{¢ € Homp, (R, F) : $(R) =Fy} = 4" V™R + Ocmp(ry (9™ R 1/2), (A 14)

provided R ® F is a domain, where cmp(R) is a function of ) degf; and n, taking minimum over
all presentations (A 13). By the remark following (A 12), it follows that if two F;-algebras S and S’
become isomorphic over F, then cmp(S’) is bounded in terms of cmp(S). A final property needed
is that if R — S is a finite map of degree d, then cmp(S) is bounded in terms of cmp(R) and 4.

Proof. LetgeC,let V="V, , beasin (A7) andlet S’ =R[Z], where Z = V1Y, Note that Z is the
unique solution of the linear system

n
Y=Y vz, i=1,...n. (A15)
j=1

Let N= #Hoqu(S’, Fgr). By (A9), the number of @ € Hoqu(S, F) with [(S/R)/®] =g equals
N. By lemma A.3, for each ¢ there exist exactly #Go/#C homomorphisms @ e Hoqu(S, F) with
[(S/R)/®] = g prolonging ¢. Hence,

# {¢ € Homy, (R, F): ¢(R) =Fg and (S{TR> = C} =#C/#Go - N.

Since G, is a coset of Gp, #Go=#G,. Hence, it suffices to prove that N=g"dmR
Ocmp(R),deg 7(q""1/?). As R— S’ is a finite map of degree deg F, we get that dim R = dim S’ and
cmp(S’) is bounded in terms of cmp(R) and deg F. It suffices to show that S’ N C Fy since then
by (A 14) we have

N — qv dim &’ + OcmpS’ (qv dim S’*l/Z) — qv dimR + Ocmp(R), degF(qU dimel/Z),

and the proof is done.

Let L be the fraction field of S and K of R. Since L/K is Galois and L N F =Fg and since the
actions of Frpv and g agree on [, it follows that there exists an automorphism 7 of LF such that
t|p =g and t|p =Fry. By (A7) v permutes the equations (A 15), hence fixes Z and thus S'. In
particular, if x € ' N, then ¥ =1(x)=x,s0x€ IFy», as was needed to complete the proof. |
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Correction to ‘Shifted
convolution and the
Titchmarsh divisor problem
over IF [¢]

J. C. Andrade, L. Bary-Soroker and Z. Rudnick

Phil. Trans. R. Soc. A 373, 20140308 (28 April 2015;
Published online 23 March 2015) (doi:10.1098/rsta.
2014.0308)

Two of the equations in the above article contained a
typographical error.

Equation (1.17) should read as follows:

2
qln > dk(f)dk(f*‘h):(n:f;l) +0(q %) (1.17)

feM,

Equation (7.36) should read as follows:

2
ntk=1y 1 gy
( 1 ) = [(k—l)!]2n +ee (7.36)
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